Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Arch Virol ; 167(7): 1509-1519, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1858999

ABSTRACT

According to the Lebanese Ministry of Public Health, more than 1,053,000 cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection have been confirmed in Lebanon so far. The actual number of cases is likely to be higher. We conducted a serological study from October 2020 to April 2021 to estimate the prevalence of SARS-CoV-2 neutralizing antibodies and identify associated factors. Serum samples as well as demographic, health, and behavioral data were collected from 2,783 subjects. Sera were tested by microneutralization assay. Neutralizing antibodies were detected in 58.9% of the study population. The positivity rate increased over the study period. It was highest among the group who remained at work during the COVID-19 pandemic and in peri-urban areas with limited adherence to preventive measures. Sex and age were associated with positivity. Reported previous COVID-19, exposure to a COVID-19 patient in the family, and attending gatherings were associated with increased prevalence. Not taking any precautionary measures against COVID-19 was a risk factor, whereas precautionary measures such as working from home and washing hands were protective. The high neutralizing antibody seroprevalence rates detected in this study emphasize the high transmission rate of SARS-CoV-2 infection in the community. Adherence to preventive measures and non-pharmaceutical interventions imposed by the government is recommended.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/epidemiology , Humans , Lebanon/epidemiology , Pandemics , Prevalence , Seroepidemiologic Studies
2.
Virus Res ; 317: 198824, 2022 08.
Article in English | MEDLINE | ID: covidwho-1852224

ABSTRACT

The COVID-19 pandemic continues to pose a global health concern, despite the ongoing vaccination campaigns, due to the emergence and rapid spread of new variants of the causative agent SARS-CoV-2. These variants are identified and tracked via the marker mutations they carry, and the classification system put in place following tremendous sequencing efforts. In this study, the genomes of 1,230 Lebanese SARS-CoV-2 strains collected throughout 2 years of the outbreak in Lebanon were analyzed, 115 of which sequenced within this project. Strains were classified into seven GISAID clades, the major one being GRY, and 36 Pango lineages, with three variants of concern identified: alpha, delta and omicron. A time course distribution of GISAID clades allowed the visualization of change throughout the two years of the Lebanese outbreak, in conjunction with major events and measures in the country. Subsequent phylogenetic analysis showed the clustering of strains belonging to the same clades. In addition, a mutational survey showed the presence of mutations in the structural, non-structural and accessory proteins. Twenty five (25) mutations were labeled as major, i.e. present in more than 30% of the strains, such as the common Spike_D614G and NSP3_T183I. Whereas 635 were labeled as uncommon, i.e. found in very few of the analyzed strains as well as GISAID records, such as NSP2_I349V. Distribution of these mutations differed between 2020, and the first and the second half of 2021. In summary, this study highlights key genomic aspects of the Lebanese SARS-CoV-2 strains collected in 2020, the first year of the outbreak in Lebanon, versus those collected in 2021, the second year of COVID-19 in Lebanon.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Genomics , Humans , Mutation , Pandemics , Phylogeny , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
3.
Biology (Basel) ; 10(6)2021 Jun 14.
Article in English | MEDLINE | ID: covidwho-1269999

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has seen a worldwide spread since its emergence in 2019, including to Lebanon, where 534,968 confirmed cases (8% of the population) and 7569 deaths have been reported as of 14 May 2021. With the genome sequencing of strains from various countries, several classification systems were established via genome comparison. For instance, the GISAID clades classification highlights key mutations in the encoded proteins that could potentially affect the virus' infectivity and transmission rates. In this study, 58 genomes of Lebanese SARS-CoV-2 strains were analyzed, 28 of which were sequenced for this study, and 30 retrieved from the GISAID and GenBank databases. We aimed to classify these strains, establish their phylogenetic relationships, and extract the mutations causing amino acid substitutions within, particularly, the structural proteins. The sequenced Lebanese SARS-COV-2 strains were classified into four GISAID clades and 11 Pango lineages. Moreover, 21 uncommon mutations in the structural proteins were found in the newly sequenced strains, underlining interesting combinations of mutations in the spike proteins. Hence, this study constitutes an observation and description of the current SARS-CoV-2 genetic and clade situation in Lebanon according to the available sequenced strains.

SELECTION OF CITATIONS
SEARCH DETAIL